Disaster Preparedness for Health Technology Managers: Issues with Radiation-Emitting Devices and Radioactive Sources

Cari Borrás, D.Sc., FACR, FAAPM, FIOMP
Chair, IUPESM Health Technology Task Group
Radiological equipment has changed a bit since the early days...
Medical Imaging - Today

X Rays
- **Planar Projection Imaging**
 - **Radiography** (Film or Digital: CR / DR)
 - General
 - Mammography
 - Dental
 - Bone Densitometry
 - **Fluoroscopy** (Image Intensifier or Flat Panel)
 - Diagnostic
 - Interventional

Volume (3D) Projection Imaging
- **Computed Tomography (CT)**
- **Digital Tomosynthesis**

Non-Ionizing Radiation
- **Magnetic Resonance (MR)**
 - MRA
 - MRS
 - fMRI
- **Ultrasound (US) incl Doppler**

Nuclear Medicine
- Gamma Camera
- SPECT
- PET

Hybrid Systems
- SPECT/CT
- PET/CT
- PET/MR
- MR/US
- MR/Optical
RADIATION THERAPY

- External Beam Treatment (Teletherapy)
- Brachytherapy
 - Intracavitary
 - Interstitial
 - Intraluminal
 - Inter / Intraoperative
External Beam Radiotherapy Modalities

- **Contact Therapy**
 - + < 100 kV X Rays

- **Superficial Therapy**
 - + 100 to 120 kV X Rays

- **Orthovoltage Therapy**
 - + 150 to 400 kV X Rays

- **“Teletherapy Units”**
 - + Cs - 137 and Co – 60

- **Megavoltage**
 - • X Rays
 - • Electrons
 - + Linear Accelerators

- **Heavy Charged Particles**
 - + Protons & C, Ar, Ne Ions

- **Others**
 - + Neutrons, Pions
First Co-60 Unit (1951)

Cs-137 Teletherapy (1960’s)

Orthovoltage X-Ray (1990’s)

Linac with IGRT (2000s)
3 - D Treatment Modalities with LINACS

- Conformal Radiotherapy (3DCRT)
- Intensity-Modulated Radiation Therapy (IMRT)
- Intensity-Modulated Arc Therapy (IMAT)
- Volumetric Modulated Arc Therapy (VMAT)
- 4-D Radiation Therapy
- Stereotactic Radiosurgery (SRS)
- Stereotactic Body Radiation Therapy (SBRT)
- Image-Guided Radiation Therapy (IGRT)
- Image Fusion
- Tomotherapy
Changes in Brachytherapy Breast Cancer Treatment

1929 vs 1990’s
Remote Afterloading Brachytherapy Units

LDR (1970’s) HDR (1990’s)
Electronic Brachytherapy

Miniature x-ray tubes that can yield similar dose distributions to LDR I-125 and similar dose rates to HDR Ir-192

Disaster Types that Affect Hospitals

1. Loss of Radiation Source Control at the Hospital
2. Nuclear / Radiological Event
3. Natural Disasters
 a) Fires (do not have to be “natural”, they could be arson)
 b) Earthquakes
 c) Hurricanes / Typhoons
 d) Floods / Tsunamis
1. Loss of Radiation Source Control at the Hospital: Examples

Co-60 Source Stuck

Brachy Cable Broken
1. Loss of Radiation Source Control at the Hospital

▲ A BSS-based safety guide for medical applications considers this a contingency not an emergency

▲ Medical Physicists/Radiation Protection Officers need to have contingency plans and do periodic drills to test the appropriateness of the responses

▲ Medical devices containing radioactive sources, to prevent patient / staff irradiation in case of a power failure (source would not retract), must have a manual retract assembly and/or a UPS
2. Nuclear / Radiological Event

(Example: Chernobyl radioactive discharges may have affected a hospital in the area)

▲ Medical Services may be inoperable if radiation contamination is serious and both patients and staff may have to be relocated

▲ Hospital managers should request help from National Agency in charge of Disaster Response

▲ Country may need international assistance (See Joint Radiation Emergency Management Plan of the International Organizations EPR-JPLAN (2013), published by the IAEA)
Prypiat Hospital in Ukraine. (Carl Montgomery/flickr)
2. Nuclear / Radiological Event

If the hospital be part of the national / regional network of hospitals providing medical care to irradiated or contaminated patients in a nuclear/radiological emergency

▲ Activate Emergency Plan, that should have been tested in practice drills periodically, and includes coordination with National Disaster Response Agency

▲ Assemble medical/technical/radiation experts team

▲ Prepare hospital to provide staff and rooms / areas for:
 • Irradiated patients in need of sterile conditions
 • Radioactivity detection in incoming patients & staff
 • Decontamination
Medical treatment of a contaminated wound *(The medical aspects of radiation incidents, REAC/TS)*
3. Natural Disasters

Common Recommendations

Device and building should be built to withstand major potential disasters in the area

If an event occurs when patients are undergoing radiological procedures:

- Stop exams, interventions or treatments
- Move patients to safe location
- Record given doses (mu or time) in case of radiotherapy treatments
3. Natural Disasters
Common Recommendations

After the event

◆ Check and correct – if possible – the medical device’s mechanical and electrical integrity
 • Components
 • Accessories, including patients’ masks, immobilizers…
 • Dosimetry systems and QA phantoms

◆ Assess/repair device’s electrical & water supplies

◆ Assess/repair software and network operability

◆ Request medical physicist to perform a complete device evaluation before its return to clinical use
IMRT Process Tree

Processes leading to an IMRT treatment

Patient entered in data, assigned db keys, etc

Scheduling for Planning Process

Diagnosis, Staging, History and Physical

Decision to Tx with radiation

Immobilization and Positioning

Transfer Images

RTP Anatomy

RTP Planning

Plan Approval

Plan Preparation

Clinical Plan Preparation

Plan Review

MD Review

Each Imaging Procedure (CT, MR, PET...)

Initial Treatment Planning Directive (from MD)

Successful Treatment

Day 1 imaging verification and Treatment

IMRT QA

Weekly Chart Check

Day n Treatment

Saiful Huq, chair TG100
3. Natural Disasters
Recommendations if Device Contains a Radioactive Source

After the event

- Seal room (prevent access) until radiation protection officer has verified that:
 - Source is still in the device or container
 - Sealed source encapsulation is intact
 - Either no contamination has occurred or
 - Contaminated areas have been decontaminated
Checking for Contamination

Radiation Alarm

Leaded safe with Ra-226 needles

Goiania, IAEA
Additional Recommendations for Earthquakes

Depending on the magnitude, earthquakes may affect the alignment of the radiation beam.

After the event

For medical imaging devices, check:

- The congruence of the radiation and light fields
- The alignment of the whole imaging chain, including displays and networks (RIS, PACS)
X-Ray Tube

Fluoroscope with Flat Panel Detector

Fluoroscopic Imaging Chain
After the event
For external beam radiotherapy devices, especially linear accelerators, check:

▲ Position of collimator, gantry & table isocenters
▲ Field flatness and symmetry
▲ All dosimetry and treatment planning systems
▲ In-room imaging devices (IGRT)
▲ The record and verify network
▲ Patient accessories
Schematics of a medical linear accelerator (State University of Campinas, Brazil)
Conclusion

▲ Medical devices in medical imaging and radiation therapy are very vulnerable to disasters due to their design complexity.

▲ Prevention and response measures should take into account the medical device itself and its role in the whole radiological process.

▲ Hospital staff should be prepared to cope with disasters through frequent drills of a well-developed emergency plan which encompasses the phases before, during and after the disaster, and that includes radiation protection considerations.