Technical Specifications: Ultrasound Units

Kwan-Hoong Ng, PhD, FInstP, DABMP
Department of Biomedical Imaging and Medical Physics Unit
University of Malaya, Malaysia

ICMP HTTG Porto Alegre April 17 2011
Ultrasound imaging

• Important diagnostic imaging tool
• Non invasive
• No ionising radiation
• Relative inexpensive
• Readily available
• Easier maintenance
• Operator dependent
• Efficacy proven in many disciplines
• Cost-effective solution in health care
Useful resources

• American College of Radiology
 www.acr.org

• American Association of Physicists in Medicine
 www.aapm.org

• Institute of Physics and Engineering in Medicine
 www.ipem.org.uk
Selection of Equipment

The clinical applications and the relative workload in each application will determine the specification that is desirable or appropriate:
• An all-purpose general ultrasound scanner in a busy general hospital to cover entire range of common clinical applications (but mainly abdominal work), will require different specs from that is dedicated to musculo-skeletal or vascular imaging.
• A portable machine performing simple investigations will be required to meet basic specs for imaging but will give priority to size and portability, rather than excellent image resolution and sensitivity.
General Considerations for all equipment
1.1 Clinical applications for which the equipment will be used:

- Adult/paediatric
- General abdomen
- Ob/Gyn/foetal
- Small parts/breast/musculoskeletal
- Vascular/cardiac
- Biopsy/interventional
1.2 Workload in each application:

- Main
- Occasional
- Possible future use
1.3 Transducer/probe required:

- Linear
- Curved linear array
- Phased array/sector
- Endocavitary
- Intraoperative
• Depth range for each type of transducer:
 – Deep
 – Multiple
 – Superficial
• Footprint size
• Biopsy guidance facility
2. Scanning Capabilities required:

- B- and M-mode
- Colour, spectral, power Doppler
- Tissue harmonic imaging
- Contrast agent imaging
- 3-D/ 4-D imaging
3. Physical features:

- Mobility (transportability): static, mobile, portable/emergency
- Screen size, positioning flexibility
THE LAST THING YOU WANT TO HEAR WHEN YOUR WIFE'S GETTING AN ULTRASOUND...

BRING IN THE WIDE-SCREEN!
4. Measurement/analysis facility

- Standard: Distance, area, circumference, volume
- Specialised measurement/analysis calculations for specific clinical applications such as vascular, obstetric or cardiac work
5. Ultrasound settings

- Magnification facility
- Cineloop review
- Adjustable number and depth of focal zones
- Adjustable signal processing facilities
- Tissue specific pre-sets for individual clinical applications
6. Annotation and documentation

6.1 Display and annotation:

- Patient, centre and date identification
- Text and anatomical site markings
- Ultrasound settings and indices
6. Annotation and documentation

6.2 Documentation:
Facility for permanent recording of images:
• Thermal printer (B/W)
• Colour printer
• VHS or digital video recorder
• Connection to local laser printer
• Connection to local imaging network
• DICOM3 compatibility/ print
• MO disk/ DVD
7. Safety, compliance, QA
7. Safety, compliance, QA

AIUM acoustic output/
FDA

Thermal index
Mechanical index
8. Equipment trials and training

- Assess full range of clinical applications
- Evaluate performance
- Application training
9. Equipment review and replacement

- Rapid changes in technology and changing clinical expectations and needs
- Consider upgrade or replacement
<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>ABDOMINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-mode Imaging:</td>
<td></td>
</tr>
<tr>
<td>Transducer: linear array (LA), curved linear array (CLA), phased array (PA)</td>
<td>CLA or PA</td>
</tr>
<tr>
<td>Frequency range (MHz)</td>
<td>2-7</td>
</tr>
<tr>
<td>Penetration (cm)</td>
<td>15</td>
</tr>
<tr>
<td>Spectral Doppler</td>
<td></td>
</tr>
<tr>
<td>Transducer (linear array (LA), curved linear array (CLA), phased array (PA))</td>
<td>CLA, CLA or PA</td>
</tr>
<tr>
<td>Frequency range (MHz)</td>
<td>2-5</td>
</tr>
<tr>
<td>Calculation of waveform indices</td>
<td>manual</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Accuracy of range gate registration (mm)</td>
<td><1</td>
</tr>
<tr>
<td>Penetration (cm)</td>
<td>10</td>
</tr>
<tr>
<td>Flow imaging:</td>
<td></td>
</tr>
<tr>
<td>Transducer</td>
<td>CLA</td>
</tr>
<tr>
<td>linear array (LA), curved linear array (CLA), phased array (PA)</td>
<td></td>
</tr>
<tr>
<td>Frequency (MHz)</td>
<td>2-5</td>
</tr>
<tr>
<td>Penetration</td>
<td>10</td>
</tr>
</tbody>
</table>

Frequency and type of array should be appropriate for depth and penetration.
Take Home Points -1

- Ultrasound imaging is an indispensible imaging tool in diagnosis
- Non-invasive, no ionising radiation
- Readily available
- Easier maintenance
- Efficacy proven in many disciplines
- Cost-effective solution to health-care
Selection of equipment and technical specs depend on the *clinical applications* and the relative *workload* in each application.