Region of interest tuberculosis screening

WATERLOO ENGINEERING

engineering.uwaterloo.ca

Ryan Mann

Daniel Severn

Waseem Mirza

Karim S Karim

Outline

- Background on Tuberculosis
- Options for screening
- Proposed x-ray system
- Medical study objective
- Materials and Methods
- Results
- Conclusion

Background on Tuberculosis

- 1.4 million died in 2011 as a result of TB
- 60% of TB cases were in S-E Asia and W Pacific, 25% in Africa
- <2% of TB-related deaths were in the Americas
- TB is treatable but must be determined preferably at an early stage

- Symptom questionnaires
- Cartridge-based DNA tests NAAT (Xpert MTB/RIF)
- Sputum/smear microscopy (LED Fluorescence Microscopy)
- Digital chest x-ray (CXR) (Recommended by World Health Organization, StopTB Partnership)¹

WATERLOO ENGINEERING

¹ Ikushi Onozaki, "

<u>TB Disease Prevalence Survey</u>", Genevalence Survey

Relative Costs of TB Diagnostics

Cuevas, et al, "LED Fluorescence Microscopy for the Diagnosis of Pulmonary Tuberculosis: A Multi-Country Cross-Sectional Evaluation" PLoS Med. 8(7) (2011)

FINDDiagnostics.org "LED fluorescence" and "Xpert MTB/RIF"

Sensitivity of TB Diagnostics

Cuevas, et al, "LED Fluorescence Microscopy for the Diagnosis of Pulmonary Tuberculosis: A Multi-Country Cross-Sectional Evaluation" PLoS Med. 8(7) (2011)

FINDDiagnostics.org "LED fluorescence" and "Xpert MTB/RIF"

Time to Results for TB Diagnostics

Cuevas, et al, "LED Fluorescence Microscopy for the Diagnosis of Pulmonary Tuberculosis: A Multi-Country Cross-Sectional Evaluation" PLoS Med. 8(7) (2011)

FINDDiagnostics.org "LED fluorescence" and "Xpert MTB/RIF"

- CXR alone is more sensitive to TB than symptom surveys alone^{1,2}
- 60% of culture confirmed cases are undetected by LED FM (smear negative)²
- Digital CXR has value added: tele
 -radiology, Computer Aided Diagnosis²

WATERLOO 12 ENGINEERING

¹Van't Hoog AH, Meme HK, Laserson KF, Agaya JA, Muchiri BG, Githul WA, Odeny LO, Marston BJ, Borgdoff MW. Screening strategies for tuberculosis prevalence surveys: The value of chest radiography and symptoms. PLoS 2012;7(7):e38691.

²Ikushi Onozaki, "TB Disease Prevalence Survey", Geneva WHO, 2011

Digital x-ray system

WATERLOO ENGINEERING

Detector size cost reduction

- Using a small-area detector reduces cost
- Relevant for pediatric imaging or single lung instead of full chest radiography
- Can radiologists accurately diagnose tuberculosis given two separate lung images rather than a full chest x-ray?

Medical study objective

- To determine whether a smaller-area x-ray detector could be used for screening tuberculosis
- Hypothesis: there is no difference in diagnostic accuracy of two single-lung images compared to a full chest x-ray.
- This study is **not** intended to examine correct screening procedures, but to compare **two** types of images as apples to apples.

Materials

- 570 DR and CR chest x-ray images were collected retrospectively from Aga Khan University Hospital in Karachi, Pakistan
 - 370 of confirmed TB patients
 - 200 of TB-free patients ("non-TB")
- Used in an online survey of TB-expert radiologists

Image cropping

 Full chest x-rays were each cropped into two 5" x 9" separate lung images

Web survey

- Images were randomly selected from the collection to be used in an online survey
- Each radiologist saw half of the cases in the survey as a full chest x-ray, and half as cropped, split-lung x-rays
- Two versions of the survey were created (as below)

Cases	Survey version A	Survey version B
Cases 1-10 (½ TB, ½ none)	Full chest x-rays	Split-lung, cropped x-rays
Cases 11-20 (½TB, ½ none)	Split-lung, cropped x-rays	Full chest x-rays

Web survey

 Radiologists were asked if there were any signs of TB in the images.

Investigation Into Chest X-ray Region of Interest Tuberculosis Diagnosis

Question 6: Determine if there are any signs of TB, or no signs at all.

- No sign of TB
- Sign(s) of TB

Submit

Investigation Into Chest X-ray Region of Interest Tuberculosis Diagnosis

Question 44: Determine if there are any signs of TB, or no signs at all.

- No sign of TB
- Sign(s) of TB

Submit

WATERLOO

Measurements

- Two different measurements were made with 1480 data points across 21 survey sessions:
 - Sensitivity (correct TB diagnosis)
 - Specificity (correct non-TB diagnosis)
- These were based on the gold standard diagnosis for each case

Results: overall

Overall sensitivity and specificity results for tuberculosis with full chest x-ray and split -lung, cropped x-ray

Full x-ray sensitivity	209/356 = 58.7%
Full x-ray specificity	354/384 = 92.2%
Split-lung, cropped x-ray sensitivity	219/359 = 61.0%
Split-lung, cropped x-ray specificity	335/381 = 87.9%

Results: sensitivity

- For each radiologist/session, full chest x-ray sensitivity is compared with split-lung, cropped x-ray sensitivity.
- The black line represents equal sensitivity in either type of image.
- Spread out, but overall centred around the "equal accuracy" line.

Results: specificity

- For each radiologist/session, full chest x-ray specificity is compared with split-lung, cropped x-ray specificity.
- The black line represents equal specificity in either type of image.
- Three major outliers out of 21 raters skew the results.

Results: specificity outliers

- Three radiologists performed significantly worse at correctly diagnosing TB-free x-rays compared to the others.
- They incorrectly diagnosed many non-TB cases that no other radiologist incorrectly diagnosed.
- One of the three performed poorly, but since their specificity results were equal for both split -lung and full x-ray cases, hypothesis was not affected

Results: specificity outliers

Statistical results

- The data were fit to a generalized linear model
- A standard Wald test was performed to determine if there was any difference in diagnostic accuracy depending on image type
- For sensitivity, the p-value was 0.58
- For specificity, the p-value was 0.037, or 0.41
 when the two outliers were removed
- This shows that there is no difference in diagnostic accuracy between the image types.

WATERLOO ENGINEERING

Results: rater experience

- Radiologists were asked for their estimation of the task's relative difficulty
- Scale from 1 ("not difficult") to 5 ("very difficult")
- Radiologists agreed the task was easier than they first imagined before completing the survey

	Pre-survey	Post-survey	Change from pre- to post-survey
Average Difficulty	2.923	1.462	-1.462
Standard Deviation	1.037	0.660	1.050

Conclusion

- There is no noticeable difference in sensitivity between a full chest x-ray (58.7%) and a split-lung, cropped x-ray (61.0%) for screening for tuberculosis.
- There is some evidence (2 very atypical points) that suggests that specificity is worse for split -lung, cropped x-rays (87.9%) than for full chest x-rays (92.2%), but the majority of radiologists performed well in both cases.

Summary and Future

- Examine the possibility of using pulmonary sized (two -lung) digital X-ray detectors in place of traditional chest sized devices
 - Less user acceptance issues
 - Can still achieve significant cost reductions to make digital technology accessible to lower volume underserved populations
- Variation in radiologist diagnostic capabilities suggests examining the use of teleradiology and/or CAD
 - Teleradiology can send cases to a TB expert populated radiology call center to improve sensitivity and specificity
 - CAD, as a decision support system, could aid a physician or radiologist make a better diagnosis

Thank you

- Ryan Mann, BASc, EIT
 - Dept. of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
- Daniel Severn, MMath
 - Dept. of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada
- Waseem Mirza, MBBS, FCPS
 - Assistant Professor, Dept of Radiology, Aga Khan University, Karachi, Pakistan
- Karim S Karim, PhD PEng MBA
 - Full Tenured Professor, Faculty of Engineering, University of Waterloo, Canada
 - Associate Director, Centre for Bioengineering and Biotechnology, University of Waterloo, Canada

